令x=tany,dx=sec²y dy
(1+x²)^(-3/2)=1/(1+tan²y)^(3/2)=1/(sec²y)^(3/2)=1/sec³y=cos³y
∴原式=∫cos³y*sec²y dy
=∫cos³y*1/cos²y dy
=∫cosy dy
=siny + C
=x/√(1+x²) + C,C为任意常数
令x=tany,dx=sec²y dy
(1+x²)^(-3/2)=1/(1+tan²y)^(3/2)=1/(sec²y)^(3/2)=1/sec³y=cos³y
∴原式=∫cos³y*sec²y dy
=∫cos³y*1/cos²y dy
=∫cosy dy
=siny + C
=x/√(1+x²) + C,C为任意常数