解题思路:△PQR是等边△的理由就是可以求出∠DQR和∠PRQ都是60°,灵活运用Rt△中30°所对的边是斜边的一半的知识.
(1)根据题意,△ABC为等边三角形,
∴∠B=60°.
又∵DQ⊥AB,
∴∠B+∠BQD=∠BQD+∠PQR=90°,
∴∠PQR=60°.
同理,得
∠PRQ=60°
∴△PQR是等边三角形;
(2)∠DQB=30°,BD=1.3cm,
∴BQ=2.6cm,
CQ=4-2.6=1.4CM,
∠QRC=30°,
∴CR=2.8cm,
AR=4-2.8=1.2cm,
∠AER=30°,
AE=2AR=2.4cm;
(3)易证△BDQ≌△RQC≌△ADR,
∴DB=AR,
∵RQ⊥BC,∠A=60°,
∴2AR=AD,
∴3DB=AB,
∴DB=[1/3]×4=[4/3](cm).
点评:
本题考点: 等边三角形的判定;含30度角的直角三角形.
考点点评: 本题主要考查了等边三角形的性质和判定三角形全等的方法.