解题思路:根据题目的条件,先将多项式凑成完全平方的形式,再根据实际情况解答.
(1)x2-6x-27,
=x2-6x+9-36,
=(x-3)2-62,
=(x-3-6)(x-3+6),
=(x+3)(x-9);
(2)a2+3a-28,
=a2+3a+([3/2])2-([3/2])2-28,
=(a+[3/2])2-[121/4],
=(a+[3/2]-[11/2])(a+[3/2]+[11/2]),
=(a-4)(a+7);
(3)x2-(2n+1)x+n2+n,
=x2-(2n+1)x+(n+[1/2])2-(n+[1/2])2+n2+n,
=(x-n-[1/2])2-([1/2])2,
=(x-n-[1/2]-[1/2])(x-n−
1
2+[1/2]),
=(x-n-1)(x-n).
点评:
本题考点: 因式分解-运用公式法.
考点点评: 本题考查了公式法分解因式,是信息给予题,主要渗透配方思想,读懂题目信息是解题的关键.