作QE垂直于BD,交BD于E,易知,AE垂直于BD,PE垂直于BD,BD垂直于面PQE
AE*DB=AB*AD
AE=ab/√(a^2+b^2),AQ=c
QE^2=AE^2+AQ^2=(ab)^2/(a^2+b^2)+c^2
QE=√{[(ab)^2+(ac)^2+(bc)^2]/(a^2+b^2)c^2}
2)利用体积相等可求,设H为P到平面BQD的距离
1/3Spqe*DE+1/3Spqe*BE=1/3Sbdq*H
1/3Spqe*(DE+BE)=1/3Sbdq*H
1/3Spqe*DB=1/3Sbdq*H
H=Spqe*DB/Sbdq
余下自己算吧.