a=1/(2+√3)
=(2-√3)/[(2-√3)(2+√3)]
=(2-√3)/(2²-√3²)
=(2-√3)/(4-3)
=2-√3
1/a=2+√3
原式=[ (1-2a+a²)/(a-1) ]-[ √(a²-2a+1)/(a²-a) ]
=[ (a-1)²/(a-1) ]-{ √(a-1)²/[a(a-1)] }
=a-1-{ |a-1|/[a(a-1)] }
∵a-1=2-√3-1=1-√3﹤0
∴原式=a-1+{ (a-1)/[a(a-1)] }
=a-1+(1/a)
=2-√3-1+2+√3
=3