设P(x,y),满足(x-3)^2+(y-4)^2=4
圆心为C(3,4),半径r=2
那么|PA|^2+|PB|^2
=(x-2)^2+y^2+(x-4)^2+y^2
=2x^2+2y^2-12x+20
=2[(x-3)^2+y^2]+2
令D(3,0)
所以|PD|=√[(x-3)^2+y^2]
|PD|min=|CD|-r=2
设P(x,y),满足(x-3)^2+(y-4)^2=4
圆心为C(3,4),半径r=2
那么|PA|^2+|PB|^2
=(x-2)^2+y^2+(x-4)^2+y^2
=2x^2+2y^2-12x+20
=2[(x-3)^2+y^2]+2
令D(3,0)
所以|PD|=√[(x-3)^2+y^2]
|PD|min=|CD|-r=2