(Ⅰ)设等差数列{a n}首项为a 1,公差为d,
由题意,得
a 1 +2d=5
15 a 1 +
15×14
2 d=225 ,
解得
a 1 =1
d=2 ,
∴a n=2n-1;
(Ⅱ) b n = 2 a n +2n=
1
2 • 4 n +2n ,
∴T n=b 1+b 2+…+b n=
1
2 (4+4 2+…+4 n)+2(1+2+…+n)
=
4 n+1 -4
6 + n 2 +n =
2
3 • 4 n + n 2 +n-
2
3 .
(Ⅰ)设等差数列{a n}首项为a 1,公差为d,
由题意,得
a 1 +2d=5
15 a 1 +
15×14
2 d=225 ,
解得
a 1 =1
d=2 ,
∴a n=2n-1;
(Ⅱ) b n = 2 a n +2n=
1
2 • 4 n +2n ,
∴T n=b 1+b 2+…+b n=
1
2 (4+4 2+…+4 n)+2(1+2+…+n)
=
4 n+1 -4
6 + n 2 +n =
2
3 • 4 n + n 2 +n-
2
3 .