f(x)=2cos²x+2√3sinxcosx+1=(2cos²x-1)+√3×(2sinxcosx)+2
=cos(2x)+√3sin(2x)+2=2[1/2×cos(2x)+√3/2×sin(2x)]+2
=2sin(2x+π/6)+2
∵x∈[π/6,π/2] ∴2x∈[π/3,π] ∴2x+π/6∈[π/2,7π/6]
∴sin(2x+π/6)∈[﹣1/2,1] ∴f(x)∈[1,4]
f(x)=2cos²x+2√3sinxcosx+1=(2cos²x-1)+√3×(2sinxcosx)+2
=cos(2x)+√3sin(2x)+2=2[1/2×cos(2x)+√3/2×sin(2x)]+2
=2sin(2x+π/6)+2
∵x∈[π/6,π/2] ∴2x∈[π/3,π] ∴2x+π/6∈[π/2,7π/6]
∴sin(2x+π/6)∈[﹣1/2,1] ∴f(x)∈[1,4]