∫x^2根号(1+x^2)dx
=1/3∫xd (1+x^2)^(3/2)
=1/3[x*(1+x^2)^(3/2)-∫(1+x^2)^(3/2)dx]
=1/3[x*(1+x^2)^(3/2)-x/8*(2x^3+5a^2)根号(x^2+a^2)+3/8*a^4*ln(x+根号(x^2+a^2)]
这个积分 ∫(1+x^2)^(3/2)dx可以从高数课本364积分表查得
建议你了解下这个积分如何推倒
参数方程和分部积分都是可以求出来的 不过应该蛮复杂的
∫x^2根号(1+x^2)dx
=1/3∫xd (1+x^2)^(3/2)
=1/3[x*(1+x^2)^(3/2)-∫(1+x^2)^(3/2)dx]
=1/3[x*(1+x^2)^(3/2)-x/8*(2x^3+5a^2)根号(x^2+a^2)+3/8*a^4*ln(x+根号(x^2+a^2)]
这个积分 ∫(1+x^2)^(3/2)dx可以从高数课本364积分表查得
建议你了解下这个积分如何推倒
参数方程和分部积分都是可以求出来的 不过应该蛮复杂的