求lim(x->0)(1+3(tan^2)x)^((cot^2)x)
1个回答
lim(x->0)(1+3(tan^2)x)^((cot^2)x)
=lim(x->0)[(1+3(tan^2)x)^(1/(3((tan^2)x)]^3
=e^3
相关问题
求极限:求极限:x→0时求极限Lim (1+3tan²x)⌒cot²x幂
lim x趋向0 1/x∧2— cot∧2x 求极限
高等数学试题绪悄趋\x0d1.计算lim(1/x2-cot2x) X→0 2 lim(1-x)tanπx/2x→1
lim(x→0)=(1/x^2-cot^2x)
求极限.lim(1-cot³x)/(2-cotx-cot³x)
x趋向1负时,求lim【ln(1-x)+tan派/2*x】/cot派*x,谢谢
求下列极限(1)lim(x—>o)tan3x/x(2)lim(X—>0)X^2sin1/X(3).(1-x)^(1/x)
x→0+时 求lim ln(tan3x)/ln(tan2x)
x →0时lim(1+x^2)^cot^2x求极限要详细过程.
lim sin2x/tan3x 求极限?(x→0)