首先证明:f(x)+f(1/x)=1
f(x)+f(1/x)=x^2/(1+x^2)+(1/x^2)/[1+(1/x^2)]
=x^2/(1+x^2)+x^2/(x^2+1)
=(1+x^2)/(x^2+1)=1
从而
f(1)+f(2)+f(1/2)+f(3)+f(1/3)+f(4)+f(1/4)
=f(1)+[f(2)+f(1/2)]+[f(3)+f(1/3)]+[f(4)+f(1/4)]
=1/(1+1)+1+1+1
=3+1/2
=7/2.
首先证明:f(x)+f(1/x)=1
f(x)+f(1/x)=x^2/(1+x^2)+(1/x^2)/[1+(1/x^2)]
=x^2/(1+x^2)+x^2/(x^2+1)
=(1+x^2)/(x^2+1)=1
从而
f(1)+f(2)+f(1/2)+f(3)+f(1/3)+f(4)+f(1/4)
=f(1)+[f(2)+f(1/2)]+[f(3)+f(1/3)]+[f(4)+f(1/4)]
=1/(1+1)+1+1+1
=3+1/2
=7/2.