解题思路:(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,得;EB=EC.由等边对等角得∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余.∴∠1=∠2.∴AE=CE.又∵AF=CE,∴△ACE和△EFA都是等腰三角形.∵FD⊥BC,AC⊥BC,∴AC∥FE.∴∠1=∠5.∴∠AEC=∠EAF,∴AF∥CE.∴四边形ACEF是平行四边形.
(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.
(3)当四边形ACEF是矩形时,有∠2=90°,而∠2与∠3互余.∠3≠0°,∴∠2≠90°.∴四边形ACEF不可能是矩形.
(1)证明:∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
点评:
本题考点: 线段垂直平分线的性质;平行四边形的判定;菱形的判定;矩形的判定.
考点点评: 本题利用了:(1)中垂线的性质,(2)等边对等角和等角对等边,(3)直角三角形的性质,(4)平行四边形和判定和性质,(5)一组邻边相等的平行四边形是菱形,(6)矩形的性质.