1)由题目条件
f'(1)=3+2a=-3 f(1)=1+a+b=0
解得a=-3,b=2,于是f(x)=x^3-3x^2+2,f'(x)=3x^2-6x=3x(x-2)
于是f(x)在[0,2]上单减,在(-∞,0),(2,+∞)上单调递增
2)由于[0,t]是一个不确定长度的空间,当t2时,函数变成先减后增,则函数在x=2上取得最小值 f(2)=-2,函数最大值为两个端点的较大值,即f(0)与f(t)中较大的一个,故需要比较两者的关系.
由f(t)>f(0),解得t>3或t3时,最大值为f(t)=t^3-3t^2+2,2