高一数学题1.设x≥0时,f(x)=2,当x<0时,f()=1.g(x)=3f(x-1)-f(x-2)2(x>0),写出

1个回答

  • 1.题不太清楚(f(x-2)2?),假定为g(x)=3f(x-1)- f(x-2) (x>0)

    a.x ≥ 2:x - 1 ≥ 0,x - 2 ≥0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 2 = 4

    b.2 > x ≥ 1:x - 1 ≥ 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*2 - 1 = 5

    c.0 < x < 1:x - 1 < 0,x - 2 < 0,g(x) = 3f(x-1) -f(x-2) = 3*1 - 1 = 2

    d.x ≤ 0:按题,无定义.

    2.令t = x+1,x = t -1,f(x+1)=x²-3x+2

    f(t) = (t-1)^2 -3(t-1) + 2 = t^2 -5t +6

    f(x) = x^2 -5x +6

    f(2) = 2^2 -5*2 + 6 = 0

    f(a) = a^2 -5a + 6

    3.似乎题不全.

    f(1) = 1 - m + n = -1,n = m-2

    f(x) = x^2 -mx + m-2

    f(-5) = 25 -5m +m -2 = 23 -4m

    4.f(x) 为一次函数,设为f(x) = mx + n

    f(f(x)) = mf(x) + n = m(mx + n) + n = m²x + n(m+1) = 3x + 5

    m² = 3,n(m+1) = 5

    解为:m = √3,n = 5(1-√3)/2,f(x)= √3x + 5(1-√3)/2

    或:m = -√3,n = -5(1+√3)/2,f(x) = -√3x - 5(1+√3)/2

    5.题有问题

    6.f(x) 为一次函数,设为f(x) = mx + n

    f(x+1) = m(x+1) + n = mx + m + n

    f(x -1) = m(x-1) + n = mx -m + n

    3f(x+1) -2f(x-1) = 3(mx + m + n) - 2(mx -m + n) = mx +5m + n = 2x + 17

    m = 2,n = 7

    f(x) = 2x + 7

    7.函数f(x)是二次函数,设为f(x) = ax² + bx + c (a ≠ 0)

    f(0) = c = 0

    f(x) = ax² + bx

    f(x+1) = a(x+1)² + b(x+1) = ax² + 2ax + a + bx + b = ax² + (2a+b)x + a + b (1)

    f(x+1) = f(x) + x+1 = ax² + bx + x + 1 = ax² + (b+1)x + 1 (2)

    比较(1)(2):

    2a + b = b + 1

    a + b = 1

    a = 1/2,b = 1/2

    f(x) = (x² + x)/2