1
∠ACB=90°,sinB=3/5,sinA=4/5,tanA=4/3,
tan∠BAD=tan(A-45)
=(tanA-1)/(1+tanA)
=(1/3)/(7/3)
=1/7
2
设AC=BC=m
则AB=根号2 m
CD=BD=m/2
BE=BDcos45°=m/(2根号2)
CE^2=BC^2+BE^2-2BC*CEcos45°=m^2+m^2/8-2m*m/(2根号2)*根号2/2=5/8 m^2
CE=根号(5/8) m
CE/sinA=AC/sinAEC
sinAEC=AC/CE *sinA = m/[根号(5/8) m] *根号2/2 = 2根号5 /5