设共有n名工人,工人卸货速度为v,货物总量为1,那么有:
1/(nv)=10
那么:v=1/(10n)
设换种方式后,卸货时间为T,
对于第一个工人,卸货时间为T
对于第二个工人,卸货时间为T-t
……
对于第n个工人,卸货时间为T-(n-1)t
那么有vT+v(T-t)+v(T-2t)+……+v[T-(n-1)t]=1
化简得:v[nT-n(n-1)t/2]=1
代入 v=1/(10n)得:T-(n-1)t/2 =10
又最后增加的一个人装卸的时间是第一个人装卸时间的1/4
可得:[T-(n-1)t]/T=1/4
解上面2个方程可得:T=16,n=1+ 12/t
当t=1,2,3,4,6,12时,n值分别为:13,7,5,4,3,2.