平面上如果没有直线,则整个平面就只有1个区域;如果画出第1条直线,则平面被分成2个区域,比刚才增加了1个区域;如果再画1条直线,则共有2条直线,平面最多可以被分成4个区域(要想使分成的区域尽可能多,就应该使所画的直线与前面已画的直线既不平行又无三线共点的情况发生),比刚才又增加了2个区域;如果再画第3条直线,则平面最多可以被分成7个区域,又比刚才又增加了3个区域,……,依此类推,当画出第k条直线时,平面将最多可以增加k个区域,这样观察得出的规律正确吗?
显然,如果要使分得的区域尽可能的多,画的这些直线应满足两个条件:(1)任何两条直线都不平行;(2)任何三条直线都不经过同一个点,即没有三条共点的情况出现.
事实上,当平面上已经有了(k-1)条直线时,如果再画出第k条直线,则直线将与前面画出的(k-1)条直线都相交且无三线共点,于是这条直线被前(k-1)条直线分成了k段,由于每段都把它所经过的平面区域分成了两个区域,所以共计增加了k个区域.