圆x+y=4,圆心O(0,0),半径2 PA=PB=√(OP-2)=√(OP-4) SPAOB=S△POA+S△POB=(1/2)PA×OA+(1/2)PB×OB=PA+PB=2√(OP-4) ∴要使得SPAOB最小,则OP最短,此时OP为O到直线的距离 由距离公式 OP=|0+0+10|/√(2+3)=10/√13 ∴SPAOB最小为 2√(100/13-4)=8√39 /13
若点P在直线2x+3y+10=0上,直线PA,PB分别切圆x2+y2=4于A,B两点,则四边形PAOB面积的最小值为多少
1个回答
相关问题
-
P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB面积的最小值为( )
-
P是直线2x+y+10=0上的动点,若直线PA,PB分别切圆x2+y2=4于A,B两点,O为坐标原点,求四边形PAOB的
-
若P(X,Y)是圆x^2+y^2=1外的动点,PA切圆于点A,PB切圆于点B,则向量PA*PB的最小值为?
-
点p在直线l:2x+y+10=0上移动,PA,PB与圆x^2+y2^=4分别相切于A,B两点,求四边形PAO
-
已知点P(x,y)是直线x+my+4=0上的一个动点,过点P作直线PA、PB切圆C:x^2-2x+y^2=0于A、B两点
-
过点P(-2,0)作直线l交圆x2+y2=1于A、B两点,则|PA|•|PB|=______.
-
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,
-
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,
-
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,
-
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,