令tanx=t,则
∫dx/(tan^x+sin^x)=∫dt/(t^4+2t^2)=1/2×∫[1/t^2-1/(t^2+2)]dt=1/2×[-1/t-1/√2×arctan(t/√2)]+C
=-1/2tanx-1/(2√2)×arctan(tanx/√2)+C
令tanx=t,则
∫dx/(tan^x+sin^x)=∫dt/(t^4+2t^2)=1/2×∫[1/t^2-1/(t^2+2)]dt=1/2×[-1/t-1/√2×arctan(t/√2)]+C
=-1/2tanx-1/(2√2)×arctan(tanx/√2)+C