l=4*根号下((a-x)^2+(a-y)^2)
x+y=a
(a-x)^2+(a-y)^2
=2a^2-2a(x+y)+x^2+y^2
=(x+y)^2-2xy-2a(x+y)+2a^2
=((x+y)-a)^2+a^2-2xy
=a^2-2xy
求其最小值,即求xy的最大值
xy小于等于((x+y)/2)^2
l=2*根号(3)a
周长为 2倍根号3 *a
l=4*根号下((a-x)^2+(a-y)^2)
x+y=a
(a-x)^2+(a-y)^2
=2a^2-2a(x+y)+x^2+y^2
=(x+y)^2-2xy-2a(x+y)+2a^2
=((x+y)-a)^2+a^2-2xy
=a^2-2xy
求其最小值,即求xy的最大值
xy小于等于((x+y)/2)^2
l=2*根号(3)a
周长为 2倍根号3 *a