设M(x1,x1^2),N(x2,x2^2),
则MN=(x2-x1,x2^2-x1^2)
MP=(-x1,-2-x1^2).
因为MN=1/2MP,
所以(x2-x1,x2^2-x1^2) =1/2*(-x1,-2-x1^2),
即x2-x1=1/2*(-x1),
x2^2-x1^2=1/2*(-2-x1^2),
所以x1=2x2,2 2x2^2=-2+x1^2,
联立解得:x2=1,x1=2或x2=-1,x1=-2
即M(1,1),N(2,4)或M(-1,1),N(-2,4)
所以|MN|=√10.