原式=(x+1)/(x²+1)×(x²+1)(x²-1)/(x+1)³-(x-3)/(x+1)
=(x²-1)/(x+1)²-(x-3)/(x+1)
=(x²-1-x²+2x+3)/(x+1)²
=2(x+1)/(x+1)²
=2/(x+1)
=2/(√3+1+1)
=4-2√3
原式=(x+1)/(x²+1)×(x²+1)(x²-1)/(x+1)³-(x-3)/(x+1)
=(x²-1)/(x+1)²-(x-3)/(x+1)
=(x²-1-x²+2x+3)/(x+1)²
=2(x+1)/(x+1)²
=2/(x+1)
=2/(√3+1+1)
=4-2√3