解题思路:(1)由导体棒切割磁感线产生感应电动势公式求出感应电动势,由闭合电路的欧姆定律求出电路电流,由图象求出4s末电路电流值,然后求出金属棒的速度.
(2)根据感应电流表达式及图象判断导体棒的运动性质,求出导体棒的加速度,由牛顿第二定律及安培力公式求出4s末导体棒的速度,然后由公式P=Fv求出力F的瞬时功率;
(1)导体棒切割磁感线产生感应电动势:E=Blv,
由闭合电路的欧姆定律可得,电路电流:I=[E /R+r]=[Blv/R +r],
由图乙可得:t=4s时,I=0.8A,即:[Blv/R +r]=0.8A,
解得:v=2m/s;
(2)由于B、l、R、r是定值,由I=[Blv/R +r]可知,I与v成正比,
由图乙可知,电流I与时间t成正比,由此可知,速度v与时间t成正比,
由此可知,导体棒做初速度为零的匀加速直线运动,
4.0s内金属棒的加速度a=[△v/△t]=
2
4m/s2=0.5m/s2,
对金属棒由牛顿第二定律得:F-mgsin30°-F安=ma,
由图乙所示图象可知,t=4s时
I=0.8A,此时F安=BIl=1T×0.8A×0.5m=0.4N,
则4s末,拉力F=mgsin30°+F安+ma=0.95N,
t=4s时棒的速度v=2m/s,
4s末力F的瞬时功率P=Fv=0.95N×2m/s=1.9W;
答:(1)4.0s末金属棒ab瞬时速度的大小为2m/s;
(2)4.0s末力F的瞬时功率为1.9W.
点评:
本题考点: 功率、平均功率和瞬时功率;牛顿第二定律.
考点点评: 本题难度较大,是一道电磁感应与电路、运动学相结合的综合题,分析清楚棒的运动过程、由图象找出某时刻所对应的电流、应用相关知识,是正确解题的关键.